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Abstract

An approach for building energy-stable Galerkin reducedtepmodels (ROMs) for linear hyperbolic or
incompletely parabolic systems of partial differentiabations (PDES) using continuous projection is de-
veloped. This method is an extension of earlier work by tha@s specific to the equations of linearized
compressible inviscid flow. The key idea is to apply to the BREansformation induced by the Lyapunov
function for the system, and to build the ROM in the transfedmariables. For linear problems, the desired
transformation is induced by a special inner product, terthe “symmetry inner product”, which is derived
herein for several systems of physical interest. Connestawe established between the proposed approach
and other stability-preserving model reduction methodgng the paper a review flavor. More specifi-
cally, it is shown that a discrete counterpart of this inn@rdpict is a weighted.? inner product obtained
by solving a Lyapunov equation, first proposed by Rowdéwl. and termed herein the “Lyapunov inner
product”. Comparisons between the symmetry inner prochuttlae Lyapunov inner product are made, and
the performance of ROMs constructed using these inner pteds evaluated on several benchmark test
cases.

Keywords: Reduced order model (ROM), proper orthogonal decompos{f®D)/Galerkin projection,
linear hyperbolic/incompletely parabolic systems, In@@ae-invariant (LTI) systems, numerical stability,
Lyapunov equation.

1. Introduction situation has prompted researchers to develop re
duced order models (ROMs): models constructed

Numerous modern-day engineering problems re- from high—fidelity simulat_ions that retainthe essen-
quire the simulation of complex systems with tens @l physics and dynamics of their corresponding
of millions or more unknowns. Despite improved full order models (FOMs), but have a much lower
algorithms and the availability of massively par- c0mputational cost. Since ROMs are, by construc-
allel computing resources, “high-fidelity” models t!on, small, they can enable uncertaln_ty_ quantlfllca-
are, in practice, often too computationally expen- ion (UQ) as well as on-the-spot decision making
sive for use in a design or analysis setting. The and/or control.

continuing push to incorporate into modeling ef-

forts the quantification of uncertainties, critical to In order to serve as a useful predictive tool, a ROM
many science and engineering applications, canshould possess the following properties: consis-
present an intractable computational burden duetency (with respect to its corresponding high-
to the high-dimensional systems that arise. This fidelity model), stability, and convergence (to the
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solution of its corresponding high-fidelity model). ROM that is stable at finite time even if the solution
The second of these properties, namely numerical energy of the full-order model is growing.
stability, is particularly important, as it is a prereg-
uisite for studying the convergence and accuracy The methods described above deria friori)
of a ROM. It is well-known that popular model re- a stability-preserving model reduction framework
duction approaches known as the proper orthog- that is specific to a particular equation set. There
onal decomposition (POD) method [25; 26; 19] exist, in addition to these techniques, approaches
and the balanced proper orthogonal decompositionwhich stabilize an unstable ROM through a post-
(BPOD) method [31; 23] lack, in general, an processing & posterior) stabilization step applied
priori stability guarantee. In [30], Amsallerat to an unstable algebraic ROM system. Ideally,
al. suggest that POD ROMs constructed for lin- the stabilization is such that it will only minimally
ear time-invariant (LTI) systems in descriptor form modify the ROM. In [5], Amsallemet al. pro-
tend to possess better numerical stability proper- pose a method for stabilizing projection-based lin-
ties than POD ROMs constructed for LTI systems ear ROMs through the solution of a small-scale
in non-descriptor form. Although heuristics such convex optimization problem. In [38], a set of lin-
as these exist, it is in general unknownpriori ear constraints for the left-projection matrix, given
if a ROM constructed using POD or BPOD will the right-projection matrix, are derived by Boatl
preserve the stability properties of the high-fidelity al. to yield a projection framework that is guar-
system from which the model was constructed. anteed to generate a stable ROM. An approach
Theredoesexist a model reduction technique that for stabilizing unstable ROMs for LTI systems,
has a rigorous stability guarantee, namely balancedtermed ROM stabilization via optimization-based
truncation [29; 10]; however, the computational eigenvalue reassignment, was proposed by Kalash-
cost of this method, which requires the computa- nikova et al. in the recent work [55]. In this
tion and simultaneous diagonalization of infinite approach, the unstable eigenvalues of an unstable
controllability and observability Gramians, makes ROM are modified through the numerical solution
balanced truncation computationally intractable for of a constrained nonlinear least-squares optimiza-
systems of very large dimensions (i.e., systems tion problem formulated such that the error in the
with more than 10,000 degrees of freedom [24]).  stabilized ROM output is minimal. In [39], a ROM
stabilization methodology that achieves improved
The importance of obtaining stable ROMs has been accuracy and stability through the use of a new set
recognized in recent years by a number of authors. of basis functions representing the small, energy-
It is shown by Patera, Veroy and Rozza in [27; 28] dissipation scales of turbulent flows is derived by
that a stable ROM can be constructed using the re-Balajewiczet al. In [35], Zhuet al. derive some
duced basis method. In [24], Rowley al. show large eddy simulation (LES) closure models for
that Galerkin projection preserves the stability of POD ROMs for the incompressible Navier-Stokes
an equilibrium point at the origin if the ROM is equations, and demonstrate numerically that the in-
constructed in an “energy-based” inner product. In clusion of these LES terms yields a ROM with in-
[6; 7], Baroneet al. demonstrate that a symmetry creased numerical stability (albeit at the sacrifice of
transformation leads to a stable formulation for a consistency of the ROM with respect to the direct
Galerkin ROM for the linearized compressible Eu- numerical simulation (DNS) from which the ROM
ler equations [6; 7] with solid wall and far-field is constructed).
boundary conditions. In [1], Sermet al. propose
applying the stabilizing projection developed by In this article, several approaches to building stable
Baroneet al. in [6; 7] to a skew-symmetric sys- ROMSs for linear systems, both in the continuous as
tem constructed by augmenting a given linear sys- well as in the discrete projection setting, are pre-
tem with its adjoint system. This approach yields a sented, connected and extended. The article has
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a review flavor, but contains several new contribu-
tions, most notably the following:

e The energy-stable continuous projection
ROM method developed specifically for the
equations of linearized compressible inviscid
flow in [6; 7] is extended to generic systems
of PDEs of the hyperbolic or incompletely
parabolic type.

A stability preserving symmetry inner prod-
uct is derived for several physical systems
(the wave equation, the linearized shallow
water equations, the linearized compressible
Euler equations, the linearized compressible
Navier-Stokes equations).

Connections between the proposed energy-
stable continuous projection method and other
model reduction techniques with a pri-

ori stability guarantee, e.g., a discrete projec-
tion approach involving a Lyapunov equation-
based inner product introduced by Rowlkty

al. in [24], are established using the concept
of energy stability.

Numerical studies evaluating the performance
of ROMs constructed in the energy inner
products described herein are performed.

The remainder of this paper is organized as fol-
lows. The first part consists of some preliminaries:
projection-based model reduction (in particular,
the POD/Galerkin method) is overviewed (Sec-
tion 2), and several notions of stability (energy-
stability, Lyapunov stability, asymptotic stability,

exponential stability, time-stability) are defined
(Section 3). Attention is then turned to the con-
struction of energy-stable ROMs for linear systems
of PDEs using continuous projection (Section 4).
The energy-stability preserving model reduction

1For concreteness, itis assumed herein that the reduced ba-
sis is constructed via the POD method, as the POD is a popular
method for computing reduced bases that is feasible even for

very large systems but can give rise to unstable ROMs. It is
emphasized that the energy-stability results discussegirhe
hold for any choice of reduced basis, not just the POD basis,
however.
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approach developed specifically for the equations
of linearized compressible inviscid flow in [6; 7]
is generalized. Examples of this inner product are
given for several systems of physical interest, and
some numerical results are presented. Next, it is
shown that a certain transformation applied to a
generic linear hyperbolic or incompletely parabolic
set of PDEs and induced by the Lyapunov function
for these equations will yield a Galerkin ROM that
is stable forany choice of reduced basis. It is then
shown that, for many PDEs, the desired transfor-
mation is induced by a special weighted inner
product, termed the “symmetry inner product”. It
is also demonstrated that a discrete weighteh-

ner product first derived by Rowlest al. in [24]
and termed herein the “Lyapunov inner product” is
a discrete counterpart of the symmetry inner prod-
uct. The weighting matrix that defines the Lya-
punov inner product can be computed in a black-
box fashion for a stable LTI system arising from the
discretization of a linear system of PDESs in space.
Numerical studies of POD ROMs constructed in
the Lyapunov inner product are performed. A uni-
fying summary of the energy-stability preserving
model reduction approaches described within this
paper is given Section 6, along with some conclu-
sions. It is anticipated that this discussion will aid
the reader in selecting the most appropriate model
reduction methodology for his/her application.

2. Projection-based model reduction

In this section, several approaches to building
projection-based reduced order models are re-
viewed. Attention is restricted to LTI systems.
A system is called time-invariant if the output re-
sponse for a given input does not depend on when
that input is applied [15].

At the continuous level, an LTI system can be rep-
resented by a PDE (or system of PDES) of the form

Z(X(t)) + Z(u(t)),
Zo(x(1)),

in an open bounded domai, subject to some
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boundary conditions on the boundary @f de- The general approach to projection-based model

noted bydQ, written abstractly as reduction consists of three steps, described below.
L x(1) = g(t). ) Step 1: Calculation of reduced trial and test bases,

denoted by®y = ( @, -+, @y ) andWy =

Heret denotes timex € R" is called the state vec- ( @1, -, @n ) respectively, each of ordéd,

tor, u € RP represents the vector of control vari- WithM <<N.- _

ablesy € R s the measured signal or output, and Step 2: Approximation of the solution to (1) by
the *’ symbol denotes differentiation with respect M

to time, i.e.x = 9% The operator? : R" — R" is X(t) ~ ZLXM’i (1)@, = Dyxu(t), (5)
a smooth linear spatial-differential operator, i.e., i=

o= Av )V 3 wherexy i (t) are the unknown ROM coefficients or
Wfza v ()00, ® odal amplitudes, to be determined in solving the
- ROM.
whereA, e R4 y = ( Vi, -, Vg ) is a multi- Step 3: Substitution of the approximation (5) into

the governing system ((1) or (4)) and projection of

index, [v| = 5%, v, and d{\.,, denotes tha'" _ !
this system onto the reduced test basis.

derivative with respect to variableg,...,v;, for
i =1,..,d, whered € N. The boundary operator The result of this procedure is a “small’ (size
% R" — R" is a similar smooth linear spatial- M << N) dynamical system that, for a suitable
differential operator, and € R" is a smooth func-  choice of reduced bases, accurately describes the
tion specifying the boundary data. The boundary dynamics of the full order system for some set of
conditions (2) can be of the Dirichlet, Neumann or conditions. The reduced basds, € RN*M and
Robin type, or a combination of these three types. W,, ¢ RN*M are functions of space but not time,

It is assumed that the boundary conditions (2) are and are assumed to have full column rank. In the
selected such that the resulting initial boundary case thatly # @y, the projection is referred to as
value problem ((1) with boundary conditions (2) a Petrov-Galerkin projection. Otherwise Wy =

and an initial condition) is well-posed. The oper- @, the projection is referred to as a Galerkin pro-
ators.Z. : RP — R" and.%, : R" — RY9 are smooth  jection. This terminology is introduced here as it
linear mappings. The abstract operat?fs %,  will be shown later that the energy-stable model
£ and.%; are introduced to keep the discussion as reduction approaches derived in this work are ef-

general as possible, and used in subsequent analyfectively Petrov-Galerkin methods.
Sis.

Suppose the PDE system (1) has been discretized2.1. Calculation of the reduced bases (Step 1)

in space using some numerical scheme, e.g., the _ _
finite element method. The result will be a semi- There exist a number of approaches for calculating

discrete LTI system of the form: the reduced basis modeStép 1of the model re-
duction), e.g., the POD method [25; 26; 19], the
xn(t) = Axn(t)+Bup(t) @ BPOD method [31; 23], the balanced truncation
yon(t) = Cxn(t). method [29; 10], the reduced basis method [27;
28]; also methods based on goal-oriented bases
Here,xy € RN is the discretized state vectar, € [21], generalized eigenmodes [37], and Koopman
R is the discretized vector of control variables, modes [40]. Attention is restricted here to the POD
andygn € RQ is the discretized outpus € RN*N, basis, but it is noted that the energy-stability re-
B € RN*P andC € RO*N are constant matrices (in  sults derived in this paper hold fany choice of
particular, they are not functions of tinie reduced basis. The reason for the choice of the
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POD reduced basis is two-fold. First, the POD shown for the POD [19; 34]:
is a widely used approach for computing efficient

bases for dynamical systems. Moreover, ROMs 1X
constructed via the POD/Galerkin method lack in Ri;
general ana priori stability guarantee (meaning
POD/Galerkin ROMs would benefit from stability-  whereJ =dim ({x%,...,x*}), and where\; > ... >
preserving model reduction approaches such asA; > 0 are the positive eigenvalues of the operator
those developed herein). R (6).

2 J
=3 A @)
k=M+1

X — Z (Xla‘pj) P;
=1

Discussed in detail in Lumley [16] and Holmes Typically, the size of the reduced basis is chosen
al. [19], POD is a mathematical procedure that, based on an energy criterion. Thathéjs selected
given an ensemble of data and an inner product, de-to be the minimum integer such that

noted generically by-, -), constructs a basis for the

ensemble. This basis is optimal in the sense that it Epob(M) = tol, (8)
des_crlbes more energy (on average) of the enSfem_where 0< tol < 1 represents the snapshot energy
ble in the chosen inner product than any other lin- represented by the POD basis, and

ear basis of the same dimensigh The ensemble '

{xk:k=1,...,K} is typically a set oK instanta- B Zile)‘i

neous snapshots of a numerical solution field, taken Epop(M) = SK A ©)

for K values of a parameter of interest, otatlif- 2=
ferent times. Mathematically, POD seeks ¢
dimensional M << K) subspace spanned by the

set{g;} such that the projection of the difference There are two approaches for performitgp 3of
between the ensembté and its projection onto the  the model reduction: continuous and discrete pro-
reduced subspace is minimized on average. It iSjection. These approaches are described, as well
a well-known result [6; 19; 34; 33] that the solu- as compared and contrasted, in the present subsec-
tion to the POD optimization problem reduces to tjon. Stability-preserving methods for constructing

2.3. Projection (Step 3)

the eigenvalue problem ROMs using these approaches will be detailed in
Sections 4 and 5.
Rop=Ag, (6)

whereR is a positive semi-definitenatrix with its 2.3.1. Model reduction via continuous projection
(i, ]) entry given byR;j = 2 (x,x}) for 1 <i,j < _ o

K. It can be shown [19; 16] that the set bf In the continuous projection approach [6; 7], the
eigenfunctions, or POD modefp, :i =1 M} continuous system of PDEs (1) is projected onto a

’ (I IARRR

corresponding to thd! largest eigenvalues 6 is continuous representation (discussed in more detalil

precisely the desired basis. This is the so-called P€low) of the reduced test basig; }}1; € R" in

“method of snapshots” for computing a POD basis & continuous inner produgt, ), for example, the
[25]. usualL? inner product

o o _ (X<1>,X<2>) _ / xUTx@da  (10)
2.2. Approximation of solution in reduced basis Q

(Step 2) where thexy;(t) are the unknown ROM co-

) ) ) . - - T
Once the reduced basis is computed, the solution€fficients or modal amplitudegso that xj, =
X(t) is approximated as a linear combination of the

reduced basis modes (53tep 2. Given this ap- 2Weighted variants of the? inner product are considered
proximation, the following error formula can be laterin this work.

5




( Xm1, -+, Xmm )), to be determined in solv-
ing the ROM dynamical system (derived below).

Substituting (5) into (1), the following is obtained

ShowmiOe = 2 (XMt @)
+  Z(u(t)), (11)
yom(t) = Z(EMixwmit)e),

whereygm(t) is the reduced approximation of the
output.

Next, a reduced test bas{gp;}M; € R" is intro-

finite elemente such that g | Qe = Q. Assume
also (without loss of generality) that the continuous
solution to (11) is scalar-valued. LmQé denote
the value of thé!" basis function at th¢!" node of
elementQcfori=1,...Mandj=1,....nn, where
nnis the number of nodes of eleme®¢. Then, the
finite element representation of the veogmin the
elementQ°€ is:
nn

w=3 Ny

=

(14)

duced, and the system of PDEs (11) is projected where N;(x) denotes the'" finite element shape
onto a continuous representation of the reduced testnction. Assembling the set of functioms over

basis modeg; for j =1,2,...,M in the inner prod-
uct(-,-) to yield

zg\ilxM,i(t)(wja‘pi) = lI"jvg(Zi’\ilxM,i(t)‘pi))
W;. Zeu()))

Zo(3Mimit) @),

+

yom(t) =
(12)

for j=1,2,...,M. Typically, the reduced trial and
test basegp, and ¢, are chosen to be orthonormal
in the inner product-,-), so that(y;, @) = &,
whereg; denotes the Kronecker delta function. In-
voking this property, as well as the linearity prop-
erty of the operators? and.%,, (12) simplifies to

the full set of element§Qc}o; gives a continu-

ous representation @,. A similar procedure can
be applied to obtain a continuous representation of
the test basi®¥). The integrals in (13) can then be
evaluated numerically through the use of numeri-
cal quadrature. If the integrands in (13) are poly-
nomials, it is possible to select a quadrature rule to
evaluate the integrals exactly.

2.3.2. Model reduction via discrete projection

In the discrete projection approach, the FOM ODE
system (4) (the PDE system discretized in space)

is projected onto a discrete reduced test basis in a

) = SMoxui . .

() = 2':122~' (®) (lﬂ,,f(tp.)) 13 discrete inner product. Suppose this discrete inner
+ (ll{l/lj, c(u(t)), (13) " product is the following weightet? inner product:

Yom(t) = ¥iSixmi(t)Zo(@),

2 2
(0H2) =xTe? (1)

for j =1,2,...,M. The equations (13) define a set
of M time-dependent ODEs for the modal ampli- \yperep ¢ RN*N s a symmetric positive-definite

tudesxy,i (t) in (5). matrix. Let®y € RNM andWy, € RN*M denote

Note that, since Step 1 of the model reduction (Sec- the reduced trial and reduced test bases for (4), re-
tion 2.1) yields adiscrete-valued basisby, before spectively. Assume these matrices have full col-
applying the continuous projection approach, this Umn rank, and are orthonormal in the inner product
basis needs to be represented using a set of contin{15), S0 that¥{;P®y = 1y, wherely denotes the
uous basis functions. One way to do this is to cast M x M identity matrix. The first step in construct-
the discrete-valued POD modes as a collection of ing & ROM for (4) using discrete projection is to
continuous finite elements. This procedure is out- aPProximate the solutioxy (t) by (5). Substituting
lined here, and described in more detail in Section (5) into (4), and projecting this system onto the re-
4.4.1. Assume without loss of generality that the duced test basis, the followirlg x M LTI system
solution of the POD eigenvalue problem (6) gives a IS obtained:

set of basis vectors defined at the nodes of an asso- xm(t) =
ciated mesh that can be broken up ingpdisjoint yom(t) =

AMXM (t) + B|v| Up(t),

C|\/|XM (t), (16)



where Note that, regardless of which projection approach

Ay = lIJIA PAD,,, is used to build the ROM, the ROM dynamical sys-
By = lIJI,lPB, a7 tem will have the form (16), as (13) has this form
Cu = Coy, when written as a matrix problem. The solution to

the ROM is obtained by advancing (16) forward
in time using a time-integration scheme. Since
the system considered here is linear, the projection
terms in (13) are not time-dependent. Hence, these
terms can be pre-computed and stored in the of-
fline stage of the model reduction — in particular,

In the majority of applications of reduced order they need not be re-computed at each time step of
modeling, the discrete projection approach is em- the online time-integration stage of the ROM.
ployed in constructing the ROM. This discrete ap-

proach has the advantage that boundary condition

terms present in the discretized equation set are of-3- Stability definitions

ten (depending on the implementation) inherited by

the ROM; that is, the ROM solution will satisfy the  As stated in Section 1, one of the objectives of this
boundary conditions of the FOM. Certain proper- paper is to present and establish connections be-
ties of the numerical scheme used to solve the full tween some model reduction techniques that have
equations may be inherited by the ROM as well. ana priori stability guarantee. Before beginning
The discrete approach can be black-box, at leastthis discussion, some general definitions of stabil-

for linear systems of the form (4): it operates on ity that will be used in subsequent analysis are re-
the matriced\, B andC, so that access to the high- viewed.

fidelity code that was used to generate these matri-

ces or the governing PDEs is not required provided .

these matrices can be written out from the high- 3-1. Energy-stability

fidelity code. In contrast, the continuous projection . L )
approach is tied to the governing PDEs — the con- The conc_ept OT energy—stabl_llty orlglna_ted in the
tinuous problem (1) needs to be translated to the literature |_n\_/oIV|r_\g the numt_erlcal _ana_llyS|s of s_pec-
discrete setting, e.g., by interpolating the reduced tral and finite difference discretizations to t|me—_
basis modes and evaluating the continuous innerdeF)emjent_P[?E_S [47; 8;12]. Ithas al_so appeared in
products in (13) using a numerical quadrature [6]. the Galerkin finite element method literature, e.g.,
Although the continuous approach is inherently an [4; _2]’ where the en(_argy-method was emplqyed to
embedded method, its similarity to spectral numer- derive stable Galerkin methods for hyperbolic con-

ical approximation methods allows the use of anal- S€rvation laws. Itis well-known that physical sys-

ysis techniques employed by the spectral methods_tems admit a (?er.tain energy structure. The basic
community [36: 7]. idea behind building energy-stable ROMs is that a

ROM constructed for such systems should preserve
Which of the two projection approaches described this energy structure. Among the authors who have
above (continuous vs. discrete projection) is pre- explored the concept of energy-stability in the con-
ferred depends on the application and the type of text of model reduction are Rowlest al. [23] and
model reduction approach sought (e.g., embeddedKwasniok [3]. In [23], Rowleyet al. introduced
vs. black-box). The discussion in the remainder of a family of “energy-based” inner products for the
this paper is intended to aid the reader in selecting purpose of constructing stable Galerkin ROMs for
one of these approaches for his or her problem of fluid problems. In [3], Kwasniok recognized the
interest. role of energy conservation in ROMs of nonlinear,

and whereyqw is a reduced approximation of the
output.

2.3.3. Continuous vs. discrete projection



incompressible fluid flow for atmospheric model-
ing applications, and proposed a Galerkin projec-
tion approach in which the ROM conserves turbu-
lent kinetic energy or turbulent enstrophy.

The concept of energy-stability will be introduced

in the context of a specific canonical model prob-
lem, then generalized. Consider, without loss of
generality, the following scalar initial value prob-

lem, known as a Cauchy problem [20]:

X(t)
x(0)

= Z(x(t)), t>0

s (18)

Here,.Z denotes a linear differential operator with
constant coefficients (e.g., (3), the linear operator
in (1)), f € R"is the initial condition, ana(t) € R"

is the system state at tinhe> 0. No boundary con-
ditions are given in (18), as the canonical Cauchy
problem is posed on the whole real line [8]. This is
equivalent to the problem being posed on a fixed
domain with periodic boundary conditions. The
operator.Z is said to be semi-bounded with respect
to an inner product-,-) if it satisfies the follow-
ing inequality for all sufficiently smooth functions
we L?

(W, 2w) < a(w,w), (19)

wherea € R. The following theorem (quoted from
[20]) states the conditions under which the Cauchy
problem (18) is well-posed.

Theorem 3.1.1 ([20], p. 70)The Cauchy problem
(18) is well-posed if and only if the operatd? is
semi-bounded with respect to an inner produg
which corresponds to a norm equivalent to tife
norm.

Consider now a Galerkin approximation to (18),
denoted here byy, and satisfying

(X, @) = (Z(xn), @),

for all @ sufficiently smooth, and suppos#’ is

semi-bounded with respect (g-). Settingp = xn

in (20) leads to the following energy estimate for

the Galerkin approximation:
dEn

—— < 2aE
dt =<

(20)

(21)

where Ey = 3||xn|? denotes the energy of the
Galerkin approximatiorxy, and|| - || is the norm
induced by the inner produ¢t, -). Applying Gron-
wall's lemma ((84) in Appendix A.1) to (21) gives
the inequality

X (t)]] < €27 ||xn (0)]]. (22)

The result (22) says that the energy of the numeri-
cal solution to (20) is bounded in a way that is con-
sistent with the behavior of the energy of the exact
solution to the original differential equation (18),
i.e., the numerical solution is energy-stable. This
definition can be extended to a ROM LTI system of
the form (16).

Definition 3.1.2 (Energy-Stability [12]): A ROM
LTI system (16) is called energy-stable if

Em(t) < e™Em(0), (23)
for some constantr € R, where
1
Em = EHXMHZ (24)

is the system energy of the ROM numerical solu-
tion xy to (16), and|- || is a norm equivalent to the
L2 norm.

In general, a ROM LTI system (16) is not guar-
anteed to satisfy Definition 3.1.2 even if the PDE
system (1) is well-posed and the full order LTI sys-
tem arising from the discretization of these PDEs
in space (4) is stable. However, it is often possi-
ble to ensure (23) holds for the ROM LTI system
through a careful selection of the reduced trial and
test base®P)y andW,, and/or the inner product in
which the projection step of the model reduction is
performed (Sections 4 and 5).

3.2. Lyapunov, asymptotic and exponential stabil-
ity

The concept of energy-stability can be related to
classical notions of stability, namely Lyapunov sta-
bility, asymptotic stability and exponential stabil-
ity. Consider an autonomous nonlinear dynamical
system:

X =1(x),

x e R", (25)



wheref € R" is a given function, subject to some
initial condition x(0) = Xp. Let xe be an equilib-
rium point of the system (25), meanirigxe) = 0
forallt > 0.

Definition 3.2.1 (Lyapunov, asymptotic and expo-
nential stability) [15]: The equilibrium poinixe of
(25) is said to be:

(a) Lyapunov stableif Ve > 0 there exists a
d(&) > 0 such that if[|x(0) — xe|| < J, then
[[X(t) — Xe|| < € ¥Vt > 0.

(b) Asymptotically stabldf there exists ad >
0 such that if [|x(0) — Xe|| < 9, then

(c) Exponentially stablaf there exista,3,0 >
0 such that if|[x(0) — xe|| < &, then||x(t) —
Xe|| < a||x(0) — xe||e Pt vt > 0.

In other words, if an equilibrium point of (25) is
Lyapunov stable, solutions within a distange- 0
from it will remain a distances > 0 from it for

all time; if it is asymptotically stable, solutions
within this distance will eventually converge to the
equilibrium; if it is exponentially stable, the solu-
tions will not only converge, but at an exponen-
tial rate. In general, exponential stability implies
asymptotic stability, and asymptotic stability im-
plies Lyapunov stability.

The following theorem, known as the Lyapunov

(25). Observe that the numerical energy de-
fined in (21) satisfies the definition of a Lyapunov
function (Theorem 3.2.2) if (26) holds. Thus, if an
LTI ROM (4) is energy-stable witlw = 0 (Defini-
tion 3.1.2), then the ROM is Lyapunov stable. In
Section 5, it is shown how Theorem 3.1.2 can be
used to define a stability-preserving inner product
for building stable ROMs for (4).

The stability concepts introduced above simplify
for the specific case of LTI systems of the form
(4). It is straightforward to verify that for linear
systems, asymptotic and exponential stability are
equivalent. Moreover, the following result holds.

Theorem 3.2.3 (Asymptotic Stability Theorem for
LTI Systems) [15]:An LTI system (4) is asymp-
totically (and exponentially) stable if and only if
all the eigenvalues oA have strictly negative real
parts.

Theorem 3.2.3 is commonly used to check numer-
ically (a posterior) the stability of an LTI system
(4) or a ROM (16) constructed for an LTI system
(Section 5.2).

3.3. Time-stability

Another form of stability is what is referred to
herein as “time-stability”. Essentially, a system
that is time-stable is one whose solution will not
“blow up” (i.e., produce an unbounded output)

stability theorem [15], can be used to characterize given a finite input and/or non-zero initial con-

the stability of the stability of an equilibrium point
Xe for (25).

Theorem 3.2.2 (Lyapunov Stability Theorem) [15]:
LetV be a non-negative function dd" and letV
represent the time derivative df along trajecto-
ries of the system dynamics (25), i.¥.= $'x =
g—\){f(x). LetB; = By (xe) be a ball of radius around
an equilibrium pointxe of (25). If there exists an
r > 0 such thaV is positive definite an is neg-
ative semi-definite for alk € By, thenx, is Lya-

punov stable.

The functionV defined in Theorem 3.2.2 above is
known as the Lyapunov function for the system

9

dition. For a general nonlinear system, expo-
nential stability implies time-stability, but time-
stability is a stronger notion than asymptotic stabil-
ity [53]. Since exponential and asymptotic stability
are equivalent for LTI systems, asymptotic stability
doesimply time-stability in this special case.

The concept of time-stability can also be defined in
terms of the system energy.

Definition 3.3.1 (Time-Stability [12]): A ROM
LTI system (16) is called time-stable if the numer-
ical energy of the ROM solution is non-increasing
intime, i.e., if

dEy -

5t <O (26)



It is straightforward to demonstrate that a time- can be written in the form (27). For conservation
stable scheme is also energy-stable. Suppose araws, a system of the form (27) is obtained by writ-
LTI ROM (16) is time-stable, so the ROM solu- ing the solutiong(x,t) to the underlying nonlinear
tion satisfies the energy estimate (26). Applying conservation law as a steady mean plus an unsteady
Gronwall's lemma ((84) in Appendix A.1) to this fluctuation,

inequality, En(t) < En(0). Thus, (23) holds with

g ) = () T, (29 Q) -G +qxy.  28)

In general, the converse of the above statementand linearizing the full set of PDEs around the
does not hold: energy-stability does not necessar-steady meam to yield a system of the form (27)
ily imply time-stability. This is to be expected. for g'(x,t). In this case, the matrices, K;; andG
The practical implication of a ROM possessing the appearing in (27) are functions of and its gra-
energy-stability property is that its numerical so- dients. IfKjj =0 Vi,j, (27) is known as a hy-
lution is bounded in a way that is consistent with perbolic system [14]. An example of a system
the behavior of the exact solutions of the govern- of this form is the linearized compressible Euler
ing equations (1). It is possible, in general, that system. A method for constructing energy-stable
unstable, physical solutions to the governing PDEs ROMs specifically for the compressible Euler sys-
exist, i.e., solutions that are unboundedt as . tem using continuous Galerkin projection was pre-
In this case, the energy-stable ROM may also pos- sented in [6; 7], and is extended to generic systems
sess unstable solutions that correspond to those unof the form (27) herein. Otherwise, j; # 0, (27)
stable solutions of the governing continuous equa- is known as an incompletely parabolic system [14].
tions [1]. A canonical example of such a system is the lin-
earized compressible Navier-Stokes system.

Before presenting an approach for building stable
ROMs for (27) using continuous Galerkin projec-
tion, some discussion of the assumptions required
for these stability results is in order.

4. Stable model reduction for LTI systems via
continuous projection

In this section, an approach for building energy-
stable ROMs via continuous Galerkin projection is The first assumption warranting some discussion

developed for linear PDE systems of the form: is smoothness. In general, the analysis below as-
/ 5 sumes that the solution to (27) is in the Sobolev

q/+Ai5_q K J°q +Gq =f,  (27)  Seace of first orderd’(Q) and that the matrices

0% 0% 0X; Aj andKj; are once and twice differentiable with

respect to the spatial variable, respectively. Note
that in order to obtain (27) from a nonlinear conser-
vation law through a linearization around a steady
base state (28), it is required that the base flow lin-
earized around is differentiable.

posed in an open bounded domdn In (27),
g’ € R" denotes a vector of unknownsgc R" is
a source termA;, Kj; andG aren x n matrices,
where 1< i,j < d, with d denoting the number
of spatial dimensions, and € N. The matrices
Aj, Kjj and G could be a function of space, but To complete the problem definition, it is neces-
they are assumed to be steady (not a function of sary to specify some boundary conditions for the
timet). They are also assumed to be independentsystem (27).A detailed discussion of well-posed
of the solutionq’, so that (27) is linear. The so- boundary conditions for hyperbolic and incom-
called Einstein notation (implied summation on re- pletely parabolic systems of the form (27) is given
peated indices) has been employed in (27) and sub-in [8]. The key result shown therein is that it is
sequent expressions. Most linearized conservationalways possible to find a set of boundary condi-
laws, as well as many PDEs of physical interest, tions such that the problem (27) is well-posed even

10



in the hyperbolic limit, that is, akKj; — 0 (Theo-
rem 3.3 in [8]). Moreover, the number of Dirichlet
boundary conditions required for well-posedness

whereg(x) is a function of boundary data. It is
straightforward to see that if the base flok) is
selected such that it satisfies the boundary condi-

depends on the signs of the eigenvalues of the ma-tion (32), the relevant boundary conditions on the

trix

An = Aini, (29)

on a boundangQ having an outward-facing unit
normal n. Most often, boundary conditions are
formulated in the so-called characteristic variables
[7; 8], given by:

w =S, (30)
wheres, is the matrix that diagonalize&:
An=SAnS L (31)

whereA\, is a diagonal matrix containing the eigen-
values ofA 3.

The subsequent stability proofs for ROMs con-
structed using continuous Galerkin projection for
systems of the form (27) will assume the specific
scenario in which thé\,, has eigenvalues that are
all the same sign on the boundariesdf®. More
specifically, it will be assumed th&Q can be par-
titioned asdQ = 9Q, UdQop, wheredQ, NoQp =

0 and A, is negative definite oQ, and posi-
tive definite ondQo, so that well-posed boundary
conditions are all-Dirichlet boundary conditions on
0Q, and no boundary conditions @ [8]. This

fluctuationq’(x,t) are of the homogeneous Dirich-
let type:
q'(x,t) =0, ondQ,. (33)

It is equally straightforward to show that if the
snapshots fog/(x,t) satisfy the boundary condi-
tion (33), the POD modes obtained from these
snapshots will satisfy this boundary condition as
well.

Lastly, in the case&K;j # 0 (e.g., a viscous flow
problem), it will be assumed that the viscous
boundary conditions imposed are well-posed, i.e.,
they satisfy the well-known well-posedness condi-
tions derived in [8].

A stability analysis for boundary conditions arising
from a scenario in whicl\,, does not have strictly
positive or negative eigenvalues (e.g., subsonic in-
flow, subsonic outflow in a fluid context) and/or the
boundary conditions are time-dependent is often
possible, but requires a case-by-case examination
of the boundary terms that arise in the proofs of
Theorem 4.1.1 and Corollary 4.2.1. This study was
one undertaken in earlier work by the authors for
the specific case of linearized inviscid compress-
ible flow in some earlier work [7; 6]. The bound-
ary conditions can be implemented in a ROM con-

scenario, and the boundary conditions it leads 1o, structed via continuous Galerkin projection using
arise in many physically-relevant problems, e.g., either a weak formulation or the penalty method.

fluid problems with a supersonic inflow and su- For completeness, these approaches are detailed in
personic outflow [7], and enables a clean, generic Appendix A.4.

stability analysis of the ROM including boundary

condition terms. 4.1. A stabilizing transformation

It will also be assumed (again, to enable a clean,
generic stability analysis of the ROM) that the all-
Dirichlet boundary condition 0dQ; is steady (not

a function of time), i.e.,

Suppose there exists a transformation

T: R"

q/

such thatv’ = V/(Tq'), and such that in the new
variablesv/, the system (27) has the form

N Rn7

/!
— V,

(34)

q(x,t) = g(x), onaQy, (32)

31t can be shown thad, is diagonalizable for hyperbolic

. ov oV
/ S S ! __£S
and incompletely parabolic systems [8]. VAT — K] +GV =15,

| 0X| 1) 0X|0XJ (35)

11



where: Proof. To prove energy-stability of a ROM con-

. s ) structed for (35), it is necessary to bound the en-
e Property 1: The matricesA> are symmetric ergy of the ROM solution to (35) witF® = 0:
forall1<i<d.

e Property 2: The matriceK are symmetric 9B —1dvi |13
forall 1<i,j <d. :%%(V;M,V’M)
_ / v}
e Property 3: The augmented viscosity matrix: - (VM’ TtM)
= (Vin—APGE + K5 SA -G )
K%l de Mg N ij ax9x; M S
KS= S (36) = — Jo (Vi) TAPGRLAQ + fo (Vi) TK @Xi\,;% dQ
I o — Jo (Vi) TGSV}, dQ.
KS .. K3q @ (39)
is positive semi-definite. Each 01_‘ the terms in (39) will be bounded sepa-
rately. First,
Theorem 4.1.1:Suppose a ROM for (35) on an
open bounded domai with a smooth boundary . ., TASMigo — _1( 2 (v TAS.)dO
9Q = 9Q,UdQ0, dQ, NdQo = 0 is constructed Jalvin) A . ZfQ/‘MTg&SM)/ Vi)
for v/ using continuous Galerkin projection in the +§f?(VM) /ﬁ_xiTVMSdQ/
L2(Q) inner product. Suppos&? (29) is negative :1—§f39| EVNQ ?i njVMdr
definite ondQ, (e.g.,dQ, is a supersonic inflow —éfmo(VM)aA'éi nivydr
boundary in a fluid mechanics context), and pos- +%fQ(V’M)T ﬁ—mﬁv’MdQ.

itive definite ondQo (e.g., Qo is a supersonic - (40)
outflow boundary in a fluid mechanics context), so ' (40), the property that each of the matriéesis

. " symmetric has been employeBroperty 7). Sub-
that the following boundary conditions ari are stituting the homogeneous all-Dirichlet boundary

well-posed: condition ondQ into the first integral in (40), and
« Homogeneous all-Dirichlet boundary condi- €mploying the fact thaf\3 is symmetric positive
tions (/' = 0) on 9. definite ondQo, the following bound is obtained:
e No boundary conditions 08Q. _ /
— oV TAPGOQ =~ 50, (Vi) ATV}

IAS
+3 Jo(V) T F-VindQ

s
< 1 Jo(vin) T Gy dQ.

If Kﬁ # 0 suppose additional viscous boundary
conditions are imposed following the criteria listed
in [8] such that the resulting IBVP is well-posed.
Suppose the matrices in (35) satisfyoperties 1-3
above. Letvy, denote the ROM solution to (35).
Then the ROM is energy-stable with energy esti-
mate

(41)

Next, note that;

1
IV (T2 < P3T Vi (- 0)][2,  (37) 2 s
S 9%V 9 (KS%)_ 9K vy
where s is an upper bound on the eigenvalues of ] 9%0xi ox \ "1 0x; 0% 0%
the matrix (42)

2K S
= dAIS 4 K'J _GS_ (GS)T. (38)

S_—_ 71N
B”= 0% 0% 0X;

. aZV/ ) o
Jo(Vin) TKS SesidQ = fo(vi) T (K558 ) do

S o

Moreover, this energy-stability result holds my - fQ(v’M)Ta;—X:";"—X“JﬂdQ.

choice of reduced basis. (43)
12



Again, each of the two terms in (43) will be
bounded separately.
0 0
_Jb VM f?;QAdQ
7
+ Jag, (VM)TKﬁ a\;M nidr”
f)
+ Jaae (Vi) TKE a\;M mdr
7]
< foa, (Vi) TKE ;X nidlr
7]
+faQo(Vf\/|)TK|Sf a\;M nidr,
(44)
provided the matrix (36) is positive semi-definite
(Property 3.

Now for the second term in (43):

7}
Join)T 2 (K5 ) do

TBKS A
—Ja(vm) aw o 49

oKS

ik ((vwo—;vaﬂ)

92K
+3 Ja(vi)T amax VMdQ

T 0K
_%fasm (VM)

dKI

—%faQO(V/M)TZ JnVMdr
+3 Ja(Via) " 3 Vi dQ.

(43)
n jvpmdr

0°K
amax

In (45), the property that th&3 matrices and

wherefs is an upper bound on the eigenvalues of
the matrixBS (38).

O

The proof of Theorem 4.1.1 is one of the new con-
tributions of this article.

Note that, ifG = 0in (27) and theA; andKj; ma-
trices are spatially-constant, it follows thd¢ = 0

in (47). In this case, if the ROM for (27) is con-
structed in the variableg, the ROM will be time-
stable as well as stable in the sense of Lyapunov, in
addition to being energy-stable. For linearized con-
servation laws (e.g., the linearized shallow water
equations, the linearized compressible Euler equa-
tions, the linearized compressible Navier-Stokes
equations), the property thé&t = 0 and theA; and

Ki;j are spatially-constant will in general hold if the
base flow is spatially uniform.

4.2. Stability-preserving “symmetry inner prod-
uct” and Petrov-Galerkin connection

A key property of systems of the form (27) is that
they are symmetrizable [8; 6; 7]; that is, it is pos-
sible to derive a symmetric positive-definite matrix

therefore their derivatives are symmetric has beenH sych that:

employed Property 2.

Finally, (41) and (43) are substituted into (39).
As shown in [8], the viscous boundary integral
terms ondQ, will be negative provided the viscous
boundary conditions are well-posethe following
bound is obtained:

B&IvlB < 3l (%) v
)T ;;;X v}, dQ
)TGS\/’ dQ
()T (GS)Tv),dQ
Ja, (Vfw )T APV, dr

|

(46)

Nl=NIENIENIE NIE - G)s
[e)
A~~~
§<\ ==

whereBSis given by (38). Applying Gronwall’s in-
equality ((84) in Appendix A.1) to (46), it is found
that:

Tl < 25TV (-

||V;\/|('7
13

e Property ¥: The matricedHA; are symmetric
forall 1 <i<d.

e Property 2: The matriceddK;; are symmet-
ricforall 1 <i,j <d.

e Property 3: The augmented viscosity matrix:

HK 11 HK 14

KH )

: : (48)
HK 41 HK 4q
is positive semi-definite.

SinceH is symmetric positive-definite, the follow-
ing defines a valid inner product:

1 @ — [ qDTHe®@
(q ,q )(H.Q)—/Qq Hg'“dQ.

Following the terminology introduced in [6; 7],
the inner product (49) will be referred to as the

(49)



“symmetry inner product”. It is straightforward to of the spatial variabl&), it will follow from Corol-

see that the following corollary to Theorem 4.1.1 lary 4.2.1 that a ROM constructed in the symmetry
holds. inner product (49) will be time-stable and stable in
the sense of Lyapunov, in addition to being energy-

For a general system of PDEs, e.g., the linearized =

Euler equations (Example 3 in Section 4.3), the

norm induced by the symmetry inner product (49) It is interesting to observe that a Galerkin projec-
is not a recognizable “energy” quantity, but still tion of the governing (27) in the symmetry inner
satisfies the requisite mathematical properties for product (49) is equivalent to a Petrov-Galerkin pro-
an energy analysis. For some PDEs, thegeeclear jection. Letg; for i =1,...,M denote the reduced
connection between the energy inner product andtrial basis vector for the solutiog. Performing a

a physical energy quantity associated with those Galerkin projection of the equations (27) onto the
equations, e.g., the? inner product for the incom-  modesg, gives

pressible Navier-Stokes equations, which is identi- ,

cal to the kinetic energy of the solution, or the en- Jo®iH (Q’+Aig—‘i +Kjj t,‘;—g(j +Gq’) dQ

tropy inner product for the full nonlinear compress- = [o @LHEdQ,
ible Navier-Stokes equations, which represents the (52)
solution entropy [62]. for k=1,...,M. Equation (52) is equivalent to a

Petrov-Galerkin projection of the equations (27) in

Corollary 4.2.1: Suppose a ROM for (27) on an
y PP 27) the regulai.? inner product

open bounded domaif2 with the same boundary
condition assumptions as those in Theorem 4.1.1 = . /. = 5y a2 ,
for g’ ondQ = 9Q, UdQo, wheredQ, NdQo =0 Ja ¥k (q + A +Kiijgxag G > dQ
is constructed using continuous Galerkin projec- = Jo WifdQ,
tion in the symmetry inner product (49). Suppose
Properties 1-3* hold. Letqy denote the ROM so-
lution to (27). Then the ROM is energy-stable with
energy estimate

(53)

where the reduced test basis functions are given by
Y.=He,,forallk=1,..,M.

4.3. Examples of stability-preserving transforma-
qum(',T)H(H,Q) < e%BHTHq‘\/I(HO)H(H.Q% (50) tion and symmetry inner product for several
physical systems
wherefy is an upper bound on the eigenvalues of

the matrix It is straightforward to derive the matrit that de-

fines the symmetry inner product (49) for many
BH — d(HA) . 0°(HKjj) "HG_G'H (51) problems of physical interest. This matrix has been
0% 0% 0X; derived herein by the authors for several hyperbolic

_ N and incompletely parabolic systems (the wave

Moreover, this energy-stability result holds &y equation, the linearized shallow water equations,

choice of reduced basis. the linearized compressible Euler equations, and
Proof. Because of simple linear transformations, the linearized compressible Navier-Stokes equa-
the proof is analogous to the proof of Theorem tions), and is given below.

4.1.1.
u Example 1. Wave Equation
Again, in the case tha® = 0 and theA;, Kj; and Consider the one-dimensional (1D) wave equation:
H matrices are spatially-constant (which will oc- , 02U
cur if the base flow is uniform, i.e., not a function U=a"—7, (54)
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wherea € R denotes the wave speed, ang "372;‘. ponents of the fluid velocity vector [32]. The ma-

(54) is a canonical PDE of the hyperbolic type. trix G in (58) is given by
This equation can be written as a first order system

. aq _
A ai i a
A=A, (85) ol T T
where G=| ow ow ow 0 (60)
% s g
u 0 a2 d_()((’ a—;o 9z U-u
a=(n ) A=(7%) oo
o 1 0
Remark that if Each of the convective flux matrices (59) can be
symmetrized by the matrix
=g 2 ) 57)
0 &
the matrixHA is symmetric [32]. CE 000
o tse] e
Example 2: Linearized Shallow Water Equations 0 0 (g 1
Consider the linearized form of the shallow water
equations:
. aq’
"+ Ai——+Gq' =0. 58
q + P +G( (58)

These equations are obtained from the full (non- Example 3: Linearized Compressible Euler Equa-

linear) shallow water equations by decomposing tions

the fluid vectorg(x,t) into a steady mean plus an

unsteady fluctuation (28), and linearizing the full

shallow water equations around the steady meanConsider the linearized compressible Euler equa-

stateq. If qT = ( u v, W, @ ) then the con- tions. These equations may be used if a com-

vective flux matrices in the hyperbolic system (58) Ppressible fluid system can be described by inviscid,

in three-dimensions (3D) are given by: small-amplitude perturbations about a steady-state
mean flow. The equations are obtained from the
full (non-linear) compressible Euler equations by
decomposing the fluid vectay(x,t) into a steady

’ mean plus an unsteady fluctuation (28) and lin-
earizing these equations around the steady mean
stateq. If q"=(u, v, w, {, p ), whereuy,
v andw are the three components of the velocity
vector, { is the specific volume (the reciprocal of
the density), ang is the pressure, the linearized
compressible Euler equations take the form (58).

A=

oc oo
C|OOH
© < oo
<9k, o

|10 <O

0 v
u 0
0 0
0 0

|10 O C

Az

O O O g
oo g o
||g 00
Siroo

(59)

where@ denotes the local height of the fluid above
the equilibrium depth, and, v, andw are the com-

15

In 3D, the convective flux matrice&; in the lin-
earized compressible Euler hyperbolic system (58)



are given by:
u 0 0 0 ¢
0O uoOO0OO
A= 0O 0OuoO 0],
- 0 0uoO
yp 0 0 O u
v 0 00O
0 v 0 0UZ¢
A= 0 O v 0 O |, (62)
0 - 0v O
O yp 0 0 v
w O O 0O
Ow 0O 0O
Az=| 0 0 w 0 ¢
0 0 -¢woO
0O 0 yp O w

Here,y = Cp/Cy is the ratio of specific heats. The
matrix G in (58) has the form

du odu gu  dp 0
ox dy 0z ox
du du Jdu  9p 0
ox ody 0z gy_

_ | au ou o op

G= ox oJdy 0z 0z 0 (63)

0 97 9¢ -
dp Jp Ip u
ox ody 0z 0 VD u

The reader may verify that if the linearized com-
pressible Euler system (58) is pre-multiplied by the
following symmetric positive definite matrix:

p 00 O 0
0p 0 O 0

H=] 0 0 p 0 _0 ., (64)
0 0 0 a?yp?p pa?
) (1+a?)
000 pa? G

wherea is a real, non-zero parameter to yield the
system, the convective flux matricé$A; are all
symmetric [6; 7].

Example 4: Linearized Compressible Navier-
Stokes Equations

Consider the 3D linearized compressible Navier-

when a compressible fluid system can be described
by viscous, small-amplitude perturbations about a
steady-state base flow. As with the linearized shal-
low water equations and linearized compressible
Euler equations, to derive these equations from
the full (non-linear) compressible Navier-Stokes
equations, the fluid vectag(x,t) is written as the
sum of a steady mean plus an unsteady fluctuation
(28), and a linearization around the steady mean
is performed. If the viscous work terms are ne-
glected from the equatiohgappropriate, for ex-
ample, in a low Mach number regime), the re-
sult is a linear incompletely parabolic system of
the form (27). |If the fluid vector is given by
qg"=(u v w T, p), whereT andp de-
note the fluid temperature and density respectively,
the convective and viscous flux matrices that ap-
pear in (27) are given by the expressions found in
[8], and are repeated in Appendix A.5 to keep this
article self-contained. The reader can verify that if
the system (27) is pre-multiplied by the symmetric
positive definite matrix given by

p OO0 0 0
0p0 0 O
HEOOPQRO, (65)
p
000y O
coo o X

the “symmetrized” convective flux matricésA;
and diffusive flux matricesiK; satisfyProperties
1*-3" in Section 4.2. HereR denotes the universal
gas constant.

Note that the symmetry transformations in the ex-
amples above are not unique. For example, in [9],
Abarbanelet al. exhibit a transformation of the

4To the authors’ knowledge, the viscous work terms are
invariably neglected from the linearized compressibleiblav
Stokes equations by researchers studying energy-syabflit
these equations [8; 9]. The omission of these terms is jus-
tified only in the low Mach number regime, or in the case
that the base flow is uniform. The extension of the energy-
stability symmetrization approach presented here to tie li
earized compressible Navier-Stokes equations in which the
viscous work terms are retained is the subject of present re-

Stokes equations. These equations are appropriataearch.
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form (35) for the linearized compressible Navier- With the representation (66), the modes will neces-
Stokes equations written in the primitive variables sarily be in the Sobolev spa¢¢!(Q), as required
a'=(p, u v, w p). for the proof of Theorem 4.1.1.

By the discussion in Section 4.2, it is necessary to
4.4. Numerical experiments compute numerically integrals of the form:

The stability-preserving model reduction approach (q(l)7q(2)>(H o /Qq(l)THq(z)dQ- (67)

based on continuous projection described in Sec- .

tions 4.1-4.2 is now evaluated numerically on a Suppose, without loss of generality, that the finite

test case invoh/ing a 2D inviscid acoustic pres- element Shape functions are chosen to be bilinear,

sure pu|se ina2D prismatic domain. The govern- sonn= 4. The discrete representations of the vec-

ing equations are the equations of linearized com- tors g andq'? are denoted by"™ and ",

pressible ﬂOW, given in Section 4.3 (Examp|e 3) respectively. The Iength Of these vectors iS equal to

above. Prior to showing these results, a stability- the number of mesh nodéstimes the dimension

preserving discrete implementation of the projec- Of the vectorr. Let H{ be ther x r element inner

tion step of the model reduction is outlined. product matrix, taken to be piecewise constant over
each element. Then, the formula for numerical in-
tegration of (67) can be written as

4.4.1. Stability-preserving discrete implementa-

tion (q(l)’q(z)) o) — qh(l)TWq h(Z)’ (68)

The stability analysis of Sectiqns 4.1-4.2 has_ as-\, hereW is a sparse block matrix comprisediok
sumed that the integrals resulting from the projec- \ piocks of dimensiorn x r. The (k, 1)t block of

tlon_of the governing equations onto_the re(_:iuced this matrix given bywi!, where
basis modes are evaluated exactly in continuous

form. This continuous result can be translated ne| 4
to the discrete setting through the use of high- Wy = ZHQZXN@(XE)N%(XE)%. (69)
precision numerical quadrature as follows. First, e= I=

the snapshots and the POD basis modes are casljare. the outer sum is over the elements connected
as a collection of continuous finite elements. Itis J ek _| nodal “edge”; thew;, are the integration

then possible to construct a numc_erical quadratureweigh,[S and the;, are the integration points.
operator that computes exactly (with respect to the

finite element representation) all continuous inner A parallel C++ code that reads in the snapshot data
products arising from the continuous Galerkin pro- Written by a high-fidelity code, assembles the nec-
jection of the equations onto the POD modes. Sup- €ssary finite element representation of the snap-

pose the domaif is broken up intag finite ele- shots and computes the numerical quadrature nec-
mentsQe such thaug';'lQe: Q. Suppose each of essary for evaluation of the inner products has

these elements have nodes. Then, the finite ele- been written by the authors. The code, known as

ment representation of the vecwrin (27) ineach ~ Spirit , performs all the calculations in paral-
elementQg is: lel using distributed matrix and vector data struc-

tures and parallel eigensolvers from the Trilinos
project [48], and uses tHiamesh finite element
library [49] to compute element quadratures. The
parallelism inSpirit  allows for large data sets
where thelNj(x) are the finite element shape func- and a relatively large number of POD modes. The
tions used to represent the solution in each element.libmesh finite element library [49] was used to
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compute element quadratures. The online time- in the z-direction by one element. The computa-
integration of the ROM system (4) (with the ROM tional grid for this test case is composed of 3362
coefficient matrix computed withispirit  and nodes, cast into 9600 tetrahedral finite elements
written to disk) is then performed using a fourth- within the ROM code. A no-penetration (slip wall)
order Runge-Kutta scheme in MATLAB. For more boundary condition is imposed on the four sides of
information on theSpirit  code, the reader is re- the domain in thecandy plane:

ferred to [57; 56]. U Npp=00nTpp, (71)

4.4.2. 2D inviscid acoustic pulse example wherelMp = {(%2) € Q:y=1-1}U{(y,2) €

For the sake of brevity, the proposed model re- Q:x=1,-1}, andnnp denotes the unit normal

duction approach is evaluated on only one of the vectqr t(_)r”{]" -LO ensure tt:]e fS(IJIIUt'_On ha? no d]}"
physics sets given in Section 4.3. The test case con—nharnICS Im t ez-direction, the fo owq;_g c\l/Ja u_esoo
sidered is that of a 2D inviscid acoustic pressure the z-velocity component are specifiedas = 0,

pulse in the following 2D prismatic domairf2 = U3(x;0) = 0. Symmetry boundary conditions are

(—1,1) x (~1,1) € R2. The governing equations imposed forz = constant in the high-fidelity code:
are the linearized compressible Euler equations

u-ng = 0,
(Example 3 in Section 4.3). The base flow is uni- , °
: _ - Ou-ng = 0,
form, with the following values:p = 101,325 Pa, Opn, = 0, O (72)
T =300K, p =& =117kgm3, g =0 = 0p'-ns = O,

0.0 m/s, andc = 3480 m/s, wherec = /yRT is
the mean speed of sound. The problem is initial- Wherel's = {(x,y) € Q : z= const andns is the
ized with a pressure pulse in the middle of the do- unit normal vector td"s. The high-fidelity com-
main: putational fluid dynamics (CFD) simulation from
which the ROM is generated is performed until

N\ —10(x?
P(x,0) = 1419e 10+, time T = 0.01 seconds. During this simulation, the

P’(X/; 0) = PO, (70)  initial pressure pulse (70) reflected from the walls
T'(x;0) =0, of the domain a number of times. Snapshots from
Uy (x;0) = Uy(x;0) = 0. this simulation were saved everk8.0~° seconds,

to yield a total of 200 snapshots. These snapshots
In terms of the mean values, the amplitude of the were used to construct 20 mode POD bases. Two
initial pressure pulse (70) is@)1pC2. different procedures were used to generate a fluid
ROM for this problem: the POD/Galerkin method
with the symmetry inner product (49) with given
by (64), and the POD/Galerkin method with the
classicallL? inner product. The size of the POD
basis was determined using an energy criterion (8)
(see Section 2.1)M was selected such that the
modes capture 99.9% of the snapshot energy. Since
the base flow for this example is uniforr® = 0
andA; andKj; are spatially-constant in (27), mean-

For the problem considered, the high-fidelity fluid
simulation data were generated using a Sandia in-
house finite volume flow solver known as SIGMA
CFD. This code is derived from LESLIE3D [50],

a Large Eddy Simulations (LES) flow solver origi-
nally developed in the Computational Combustion
Laboratory at the Georgia Institute of Technology.
For a detailed description of the schemes and mod-

els |mplement§d within LESLIE3D, the reader is ing an energy-stable ROM is expected to be time-
referred to [51; 52]. . .
stable and stable in the sense of Lyapunov. Figure
As both the high-fidelity code as well as the ROM 1 shows a time history of the first two ROM modal
code are 3D codes, a 2D mesh of the donfirs amplitudes (circles) compared to the projection of
converted to a 3D mesh by extruding the 2D mesh the FOM CFD simulation onto the first two POD
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modes (solid lines) for the symmetry (a) arti(b) counterpart of the symmetry inner product, first de-
ROMs. Mathematically, this figure compares as a rived by Rowleyet al. [24] and termed the “Lya-
function of timet: punov inner product” herein. Although the Lya-
, punov inner product has appeared in several pub-
Xwi(t) vs. (qFOM7¢i)(H.Q)’ (73) lications [24; 1; 30], to the authors’ knowledge, a
numerical study of the properties and performance

. . e
for i - 1.2, Wher?qFOM 's the high-fidelity CFD of POD ROMs constructed in the Lyapunov inner
solution from which the ROMs were constructed. : : :

product is lacking from the literature at the present

The reader may observe reasonable agreement be: I .
. . time, and one of the contributions of this work.

tween the symmetry ROM and the full simulation

(Figure 1(a)) for the time interval considered. In

contrast, agreement between #eROM and the ~ 5.1. Stability-preserving Lyapunov inner product

full simulation is reasonable only until approxi- and Petrov-Galerkin connection

matelyt = 0.005 seconds (Figure 1(b)). The oscil-

lations in theL> ROM modal amplitudes observed

for t > 0.008 seconds suggest the presence of an

instability in theL? ROM. If the modal amplitudes

Xm,i(t) are plotted up to a longer time horizon (Fig-

ure 2), the instability in th&? ROM is apparent. X () = Axn(t). (74)

Suppose the LTI system (4) is stable in the sense of
Lyapunov, i.e., all eigenvalues of the matfixhave
non-positive real parts (Corollary 3.4.2). Sinkés
stable, there exists a Lyapunov function for

Figures 3—4 compare the FOM pressure field (a) In particular

with the field reconstructed from the symmetry (b) '

andL? (c) ROM solutions at times= 4.5 x 104 V(Xn) = X PXu, (75)
and 795x 1072 seconds. At timeé = 4.5x 10~*

seconds, both the symmetry aclROM solutions i @ Lyapunov function for (74), wheieis the so-
are in good agreement with the high-fidelity so- lution of the following Lyapunov equation:
lution (Figure 3). At the later time, .95 x 1073 -
seconds, there is a good qualitative agreement be- A'P+PA=-Q. (76)

tween the _high—fi_delity solution and the symmetry Here, Q is some positive-definite matrix [15]. A
ROM solution gFlgure 4(a), (b)). The same cannot e definite solutior to (76) exists provided
be said of thd‘_ ROM solution, however. It ISap- A s stable. Moreover, i) is symmetricP is sym-

parent from Figure 4(c) that the? ROM solution  10ic as well. GiverA and Q, a solution to the

_ 3 ;
has blown up byt = 7.95x 10" seconds, which Lyapunov equation (76) can be obtained, for in-

confirms the instability of the 20 mode? ROM stance, using thiyap function in the MATLAB
suggested in Figures 1-2. control toolbox [43]:

P = lyap(A’, Q, [I, speye(N, N))

Assume the system (74) is stable and a positive-
definite symmetrié has been computed from (76).

. . SinceP is symmetric positive-definite, the follow-
In Section 4, a method for constructing energy- i y P

stable ROMs via continuous projection of a linear < ) (2)) Ty @

5. Stable model reduction for LTI systems via
discrete projection

system of PDEs was presented. The discussion in XN XN N N (77)
Section 4 motivates the following question: can the gefines an inner product. Ldyy be a reduced ba-
energy inner product be determined in a black-box gjg of sizeM, so that

fashion for any given full order model system? Itis

shown in the present section that there is a discrete XN (1) &= Pyxm (t), (78)
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wherexy (t) denotes the ROM solution. Theorem of the ROM system (79) is non-increasing:
5.1.1 (summarized here from Section 2.3 of [24] to

keep this work self-contained) shows that (77) is d—EtM = %% (XM, XM) 2
the energy inner product for this system. = X} XM
= X1,\;| q)-,& PA(DM XM
Theorem 5.1.1 (from Section 2.3 of [24]Assume — X1, (PA+1PTA)®yxy  (80)
the linear full orqler system (74) ?s stable. S_uppose =X, ‘DIA (; PA -+ %AT p) Dy Xy
a ROM for (74) is constructed via a Galerkin pro- _ _%X-I\I;I ¢3Q¢MXM

jection in the(-,-)p inner product (77), to yield the

<0,
following reduced linear system:

sinceQ > 0. It follows that (79) is time-stable,
XM = <DI,| PA®\ Xy, (79) stable in the sense of Lyapunov and energy-stable
(Section 3).

where it has been assumed that the b&sjshas 0
been constructed to be orthonormal in the)p in-

ner product, i.e.sb{,lPd)M = Im wherely denotes  The Lyapunov inner product (77) is a discrete
the M x M identity matrix. Then, the ROM (79) counterpart of the continuous symmetry inner
is energy-stable, time-stable and stable in the senseproduct (49). This inner product can be employed
of Lyapunov. to construct stable Galerkin ROMs for (4) using
Proof. Itis shown that the energiiy = 3||xw|[3 discrete projection. An interesting question that
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arises is whether the matriR defining the Lya-
punov inner product (77) is related in some way
to the matrixW (68) that is used to perform the
continuous projection in the symmetry inner prod-
uct. In general, the answer is no. In particular,
W is by construction a sparse matrix (Figure 5(a)),
whereas? may be dense even K is sparse. This
is clear from Figures 5(b) and (c), which show (re-
spectively) the sparsity pattern of a samplena-
trix>, and its corresponding matrix.

One downside of the Lyapunov inner product is
that the matrixP which defines this inner product is
admittedly expensive to compute: the cost of solv-
ing the Lyapunov equation (76) requiré$N2) op-
erations. As a consequence, the Lyapunov inner

product has the same downside as another mode

reduction approach with aa priori stability guar-

5The A matrix whose sparsity pattern is shown in Figure
5(b) is the “PDE example” in the SLICOT model reduction
benchmark repository [41].
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antee, namely balanced truncation [29; 10]: it may
not be practical to compute the matrix defin-

ing the Lyapunov inner product for very large sys-
tems. It is worthwhile to note that computirig)
(76) is less computationally intensive than reducing
a system using balanced truncation, which requires
the solution oftwo Lyapunov equations for the so-
called observability and reachability Gramiaard

the factorizations of these Gramians [29; 10] (see
Appendix A.2). The computational cost of calcu-
lating the weighting matrix that defines the Lya-
punov inner product relative to the computational
cost of reducing a system using balanced trunca-
tion is studied numerically in Section 5.2. Note that
it can be shown that the balanced truncation algo-
Irithm may be viewed as a projection algorithm in a
special Lyapunov inner product [24]. A proof un-
covering this connection is given in Appendix A.3.

As observed earlier for the symmetry inner prod-
uct, itis clear from (79) that the Galerkin projection
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of the system (74) in the Lyapunov inner product simple enough shape, these devices can be mod-
(77) can be viewed as a Petrov-Galerkin projection eled as 1D beams embedded in two or three di-
of this system in the reguldr® inner product, with  mensional space. It is assumed that the beam de-
the reduced test basis given Wy, = P®,,, where flection is small, so that geometric nonlinearities
®), is the reduced trial basis. can be neglected. The resulting linear PDEs are
discretized using the finite element method follow-
ing the approach presented in [45; 44] to yield a
ROM LTI system of the form (4). The matrices
The stability-preserving model reduction approach A andB in (4) are downloaded from the Oberwol-
based on discrete projection presented in Sectionfach model reduction benchmark collection [46].
5.1 is now evaluated on a problem involving a These global matrices are then disassembled into
model of an electrostatically actuated beam. For their local counterparts, and reassembled to yield a
this example, the error in the ROM output relative discretization of any desired size. In the full order
to the full order model output, defined by model for which results are reported here, the FOM
hasN = 10,000 degrees of freedom. It is verified
that the full order system is stable: the maximum
real part of the eigenvalues &fis —0.0016.

5.2. Numerical experiments

co _ i Yon(t) — yom(t))

el = , 81
T SR yon(t)| (81

. To generate the snapshots from which POD bases
is computed gnd reported. Here the symkipkx are constructed, the full order model (4) is solved
denotes the integer such thahax = Kmadisnap using a backward Euler time integration scheme
where Tnax is the maximum time until which the  \ith an initial condition ofxy(0) = 0 and an in-
ROM is run. The notation- | in (81) denotes the  put corresponding to a periodic on/off switching,
absolute value, which evaluates to a scalar for thei.e.,

numerical example considered, as it has one output 0.005< t < 0.01.0.015< t < 0.02
Q=1). up(t)={ 1, 0.03<t<0.035
0, otherwise

(82)
A total of Kax= 1000 snapshots are collected, ev-
The numerical example considered is that of an ery dtspap= 5x 10-° seconds, until timé = 0.05
electrostatically actuated beam. One application seconds. From these snapshots, 5, 10, 20 and 30
for this model is analysis of microelectromechan- mode ROMs are constructed using POD in ke
ical systems (MEMS) devices, such as electrome- inner product, and POD in the Lyapunov inner
chanical radio frequency (RF) filters [44]. Given a product. In solving the Lyapunov equation (76)
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for the Lyapunov inner product weighting matrix general the most accurate. The POD ROMs con-
P, the matrixQ is taken to be thé&l x N identity structed in the Lyapunov inner product nonetheless
matrix. The system (4) is reduced also using bal- produce reasonable results (Figures 6(b)-(c)) and
anced truncation. appear to be converging to the full order model so-
lution with M-refinement (Table 2). The POD?
ROM result is not shown in Figures 6(b)-(c), as the
solution produced by this ROM blows up around
timet = 0.02 seconds.

The first step is to study the stability of each ROM.
Table 1 reports the maximum real part of the ROM
system matrices\y for eachM considered. It is
found that the.> ROM is unstable for eachl, and

becomes more unstable with increasiMgln con- Lastly, the level of computational resources re-
trast, the balanced truncation and POD Lyapunov quired for computing the Lyapunov inner product
inner product ROMs are stable for @& consid- and the level of computational resources required
ered, as expected. for performing model reduction via balanced trun-

cation [29; 10] are compared. Table 3 gives the
CPU times for the sum of the following operations
in the balanced truncation [29; 10] algorithm as a
function ofN, the problem size: calculation of the
observability Gramian, calculation of the control-
lability Gramian, and calculation of the balancing
transformation (Appendix A.2). All computations
The objective of the first runKmax = 1000) is  are performed in serial using MATLAB's linear al-
to study how well the POD ROMs can reproduce gebra capabilities and MATLAB's control toolbox
the snapshots from which they were constructed, [43], on a Linux workstation with 6 Intel Xeon 2.93
and to compare these ROMs’ performance with the GHz CPUs. Both methods exhit(N®) scaling.
performance of ROMs constructed using balanced Although the Lyapunov inner product computation
truncation. The reader can observe that the PODIs costly, as it requires the solution of a Lyapunov
ROM constructed in the Lyapunov inner product is €quation, it completes in 2-3 times less CPU time
the most accurate. The PAB3 ROM is both un-  than the balanced truncation algorithm. This is be-
stable as well as inaccurate (Figure 6(a)). cause balanced truncation requires the solution of

two Lyapunov equations for the observability and
gggoieaigngim(é ;gnsstlﬁe‘d;’( %ezg(r)g dﬁ:?i?/gngzagr;ibili— rgachability Gramian_s, as well as the Ch_olesky and
ties of the ROMs for long-time simulations. The eigenvalue factorizations of these Gramians.

full order model is run until times.@ and 25 sec-

onds respectively. As before, only snapshots up

to timet = 0.05 seconds are used to construct the 6. Summary and conclusions
POD bases for the ROMs. In addition to the signal

(82), the following inputs are applied in both the

Next, the accuracy of each ROM is examined. Ta-
ble 2 summarizes the errors (81) in the ROM so-
lutions relative to the full order model solution for
three runs of different lengths. An entry 6f*in

the table indicates that the error overflowed due to
an instability in the ROM.

full order model and the ROM: The energy-stability preserving model reduction
approach developed specifically for the equations

0.055<t < 0.06,0.065<t < 0.07, of linearized compressible inviscid flow in [6; 7]
0.08<t<0.0850105<t<0.14, is generalized: for ROMs constructed using the
up(t) = 0.115<1<012,013<1t <0.135 continuous projection approach, it is shown that

P 0.205<t<021,0215<t < 0.22 proj bproach,

1, 0.23<t<0.235 a transformation of a generic PDE system of the

0, otherwise hyperbolic or incompletely parabolic type leads to

(83) a stable formulation of the Galerkin ROM for this
The reader may observe by examining Table 2 and system. It is then shown that, for many linear PDE
Figure 6 that the balanced truncation ROMs are in systems, the said transformation is induced by a
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Table 1: Maximum real part of eigenvalues of ROM system mat§j for electrostatically actuated beam problem as a function

of basis sizeM

Basis Size 1) | Balanced Truncation PODL? | POD Lyapunow

5 —2.97x10°8 451x 10" —3.15x 10t
10 —395%x10°6 1.39x 107 —1.89x 10t
20 —2.78x 1076 1.68x 10° —7.48
30 —3.22x10°6 3.40x 10° —4.37

Table 2: Relative errors (842, in ROM output for electrostatically actuated beam problem

M
Kmax Method 5 | 10 | 20 | 30
BT 6.29x10 2 [ 451x10 3] 6.93x10° [ 3.60x10°°
1000 PODL? 8.56x 1071 6.62 - -
POD LyapunowP’ || 2.05x 103 | 6.23x10°° | 209x 108 | 1.35x10°®
BT 584x10 2] 447x103]6.29x10°[317x10°6
2000 PODL? 7.76 4.26x 10° — —
POD Lyapunow || 3.62x1072 | 1.12x 1072 | 3.47x 104 | 413x10°°
BT 736x10 7] 477x10 3 [ 548x10° [ 277x10°°
5000 PODL? 4.40x 10° - - -
POD Lyapunow || 1.80x 101 | 1.09x 101 | 203x 102 | 6.09x 103

Table 3: CPU Times (in seconds) for balanced truncation yapunov inner product computations

N
Method 1250 | 2500 | 5000 | 10,000
Lyapunov Inner Producl] 5.08x 10" | 4.60x 107 | 4.02x 10° | 6.09x 10*
Balanced Truncation || 1.09x 10? | 1.10x 10° | 1.04x 10* | 1.24x 10°

special inner product, referred to as the “symme- manifest instabilities.
try inner product”. If the Galerkin projection step

of the model reduction procedure is performed in e key properties of the symmetry inner product

this inner product, the resulting ROM is guaran- a4 | yapunov inner product are summarized in Ta-
teed to satisfy certain stability bounds regardless pie 4. Both inner products are weighted inner

of the reduced basis employed. It is demonstrated products and have the same origin: they are in-

that a discrete counterpart of the symmetry inner y,ceq by the Lyapunov function for the governing
product is the weightet? inner product obtained system of equations. The symmetry inner product
by solving a Lyapunov equation, derived in [24] by js 5 continuous inner product derived for a spe-
Rowley et al. For completeness, this inner prod- isic PDE system of the form (27). Projection in
uct, referred to as the “Lyapunov inner product’, s inner product requires access to the governing
is re-derived herein, and it is shown using the en- PDEs, which gives rise to a projection algorithm

ergy method that this inner product gives rise 10 a1 is embedded. The Lyapunov inner product is
stable ROMs constructed via discrete projection. discrete, on the other hand, and operates on an LTI

The performance of POD ROMs constructed us- gystem of the form (4) arising from the discretiza-
ing the symmetry and Lyapunov inner products are tion of a PDE of the form (1) in space using some
assessed on several numerical examples for which, ,merical scheme. e g., the finite element method
. 2 . ) - " .
POD ROMs constructed in the” inner product  pyryiection in the Lyapunov inner product is there-
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Figure 6:ygm(t) for M = 10 ROMs (FOM = full order model) for electrostatically adtecbeam problem

fore a black-box algorithm, as only tidg B andC uct projection approach involves its large compu-
matrices in (4) are needed; in particular, access totational cost. To solve numerically the Lyapunov
the governing equations it required. The sym-  equation that defines this inner produgt,N®) op-
metric positive definite matrix that defines the Lya- erations are required. Moreover, since the matrix
punov inner product can also be computed numeri- that defines the Lyapunov inner product is typi-
cally in a black-box fashion by solving a Lyapunov cally dense (in contrast to the matrix defining the
equation. The existence of a solution to this Lya- symmetry inner product, which is sparse), at least
punov equation is certain only if the full order sys- ¢(N?) storage is required [11]. As a result, creat-
tem (4) is stable; hence the Lyapunov inner prod- ing ROMs using the Lyapunov inner product may
uct is not defined for unstable systems. In contrast, not be practical for systems of very large size. The
the symmetry inner producs defined for unstable  Lyapunov inner product may nonetheless be prefer-
systems. In this case, a ROM constructed in this able to balanced truncation, which requires the so-
inner product will be energy-stable, by construc- lution of two Lyapunov equations, and the stor-
tion. However, it will not be time-stable, i.e.,itmay age of two Gramians, in addition to Cholesky and
produce (physical) solutions that are unbounded aseigenvalue factorization of these Gramians. For
t — oo. The discussion above may lead the reader large-scale unsteady problems, the symmetry inner
to prefer the Lyapunov inner product to the symme- product combined with the continuous projection
try inner product, as the former inner product can approach is recommended by the authors, despite
be computed in a black-box fashion for any stable its more involved implementation.

linear system, and can be used to build a ROM for
this system without accessing the PDEs. One of

the biggest drawbacks of the Lyapunov inner prod- It is worthwhile to note that there exist in the

literature many efficient, low storage algorithms
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Table 4: Comparison of symmetry inner product and Lyapunoeii product

Symmetry Inner Product (49) \ Lyapunov Inner Product (77)
Continuous Discrete

For linear PDE system of the form For linear ODE system of the form
. / 2~/ .

q/—i-Aig—?q—l—Kij%ng—i-Gq’:f XN = AXN

Defined for unstable systems but

time-stability of ROM is not guaranteedl'mdeﬁned for unstable systems

Induced by Lyapunov function Induced by Lyapunov function
for the system for the system
Equation specific Black-box

Computed numerically
by solving a Lyapunov equation
Sparse Dense

Derived analytically in closed form

to compute approximate solutions to large-scale known to satisfy a certain differential or integral
Lyapunov equations, like the equation defining inequality by the solution of the corresponding dif-
the Lyapunov inner product, e.g., the work of Li ferential or integral equation [54]. The differential
[58; 59], Benner [60] and Simoncini [61]. These form of this inequality is used herein:
approximate Lyapunov solvers can be used to per- T

form approximate balanced truncation model re- X(t) <BLx(t) = x(T) < x(0)elo P99s (84)
duction, and can, ir_1 a s_imilar fashion, be us_ed to ¢or Bel?2t>0,0<T<t.

compute an approximation of the Lyapunov inner
product. With these approximate methods, how-
ever, the theoreticah priori stability guarantee
shown herein for ROMs constructed in the Lya-

punov inner product is lost, in general. Likely, The palanced truncation algorithm, first introduced
ROMs constructed in approximate Lyapunov inner py Moore [29], assumes a semi-discrete full order

products will in practice have better numerical sta- odel of the form (4). The linear system (4) is
bility properties than ROMs constructed in the  first transformed into a balanced form that isolates
inner product. A numerical study of the perfor-  gpservable and reachable (or controllable) modes.
mance of such ROMs is a worthwhile future re- Thjs js achieved by simultaneously diagonalizing
search endeavor that may be the subject of future e reachability (or controllability) and observabil-

work. It iis beyond the scope of the present arti- ity Gramians. The reachability (or controllability)
cle, which focuses on inner products that give rise Gramian (Chapter 30 of [17])

to Galerkin formulations with aa priori stability

A.2. Balanced truncation algorithm for model re-
duction

guarantee. P= / ABBTA L, (85)
0
is the unique symmetric (at least) positive semi-
Appendix definite solution of the Lyapunov equation
AP+PAT +BB' =0. (86)

A.l. Gronwall's Lemma
The observability Gramian (Chapter 30 of [17])

Gronwall’'s lemma (also known as Gronwall’s in- ® T T At
equality) allows one to bound a function that is QE/O et 'cTcetdt, (87)
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is the unique symmetric (at least) positive semi- Next, the matriceg sza|ATg§, B=TpaB, C=

definite solution of the Lyapunov equation CTgeﬁ are partitioned as follows:
ATQ+QA+CTC=0 (88) An Alz_) >
It will be assumed herein that the mataxdefin- A21 Azz B2 (%3)

ing the full order system (4) is stable, i.e., it has no

eigenvalues with a positive real part. It will also be pere the blocks with subscript 1 correspond to the
assumedA,C) is observable andA,B) is reach- st observable and reachable states, and blocks
able (controllable). If this is true, the Lyapunov \yith subscript 2 correspond to the least observable
equations (86) and (88) will have positive definite g reachable states. Finally, the reduced system

solutionsP andQ respectively (Chapter 6 of [18]).  for 3 ROM of sizeM is given by:
For a discussion of balanced truncation applied to

unstable systems, the reader is referred to [22]. xm(t)  =Auxm(t)+Bmup(t),

= CMXM (t), (94)

The balanced truncation algorithm is summarized you (1)
below for the specific case of real system matfices whereAy = A1, By = By, Cy = Cy. The left and
A, B. andC. FII‘S'.[, the reachability Graml_aﬁ 'S right reduced bases are given respectively by:
obtained by solving the Lyapunov equation (86).
Next, the observability Gramia®@ is obtained by Wy =TL(1:M),  ®y = Soa(;,1:M), (95)
solving the Lyapunov equation (88). The Cholesky

factorization ofP is computed, whereSy, = Tgeﬁ.

P=UU". (89) In effect, balanced truncation is a method for com-
puting the test and trial bast4, and®), in (16).
followed by an eigenvalue decomposition of Gijyen the test and trial bases defined in (95), the

uTQu: T o T ROM system matrices (94) can be obtained from
U'QU=KZK". (90) the formulas (17). The entries of the diagonal ma-
The balancing transformation matrices: trix Z in (91) are known as the Hankel singular val-

ues of the system (4). Assuming a ROM of sMe
Toa = ZY2KTU™L, T i=UKZ Y2 (91) has been constructed using balanced truncation, the

. following error bound on the output can be shown
can now be computéd where the entries ok [31]: 9 P

are in decreasing order. The change of variables
XN (t) = Tpaxn(t) is applied to the full-order LTI N
system (4) to yield: [lYon(t) —Yom(t)[|2 < 2 ail|up(t)[[2. (96)
i=M+1
XN(t) = TpaAT pa%n(t) + TraBup(t),

yon(t) = CTpa%n(t). ®2)

Generally, balanced truncation is viewed as the
“gold standard” in model reduction. Although it
6 . is not optimal in the sense that there may be other
In the case these matrices are complex, the transpose op- .
eration' in the algorithm (and all analysis of this algorithm) ROMS _W'th smaller error norms, the approach has
should be replaced with a Hermitian transpbse a priori error bounds that are close to the low-
"In practice, the treTmsgormatiqnl matrices (91) are typjcall ~ est bounds achievable by any reduced order model
computed agpg = V' Z7, and Ty, = UW, whereZ isthe 1531 Unfortunately, balanced truncation becomes

Cholesky factor of the observability Gramia@ & zZT), and . .
W is the left singular vector 87 Z (UTZ = WSVT). This is computationally intractable for systems of very

due to numerical stability issues that could arise in coingut large dimension (e.g., of sizd > 10,000), and
12 in (91). hence is not practical for many systems of physical

27




interest [24]. This is due to the high computational the following expressions for the left and right
cost of solving the Lyapunov equations (86) and bases are obtained:

(88) for the reachability and observability Grami- T o Y201 nA ke Tyl

ans (' (N®) operations). The storage requirements Wy =Thal(1:M,:) =Z75(1:M, K U™, (97)
of balanced truncation can be prohibitive as well. o Ca N “1/2/. 4.

Even efficient iterative schemes developed for large P = Spai(1,1:M) = UKZ2(, 1:M). - (98)
sparse Lyapunov equations compute the solution Remark that (97) and (98) satisfy the following
to (86) and (88) in dense form, and hence require identity:
0(N?) storage [11]. Unlike POD, balanced trun-

cation delivers ROMs that preserve stability of a

stable system (4) [29], however. whereP is the reachability Gramian (89). It fol-

Note that there exist methods for performing model '0ws that the ROM system matrices in (94) are:
reduction via an approximate balanced trunca- wT C wT AT 1. )

tion, namely balanced POD [23], as well as low- Anm = PuA® = PyAP vz (1:M, 1 '(I\g())’o)
storage solvers for calculating efficiently approxi- By — WIB (101)
mate solutions of large-scale Lyapunov equations M M=
like those arising in balanced truncation [58; 59; Cm =C®=CP Wz %1:M,1:M). (102)
60; 61]. Unlike balanced truncation, these algo- Defining

rithms, by constructioncan be applied to large-

scale problems. Although these methods have been zm(t) = Z7Y2(1:M,1: M)xu(t), (103)
found to exhibit better numerical stability proper- _

ties than the POD/Galerkin method to model re- anq_employlng the symmetry property of the reach-
duction, they lack in general the provataepriori ability Gramian P = PT), (94) becomes:

stability guarantee of balanced truncation.

i1 M 1MW P =, (99)

() = PuAPPyzy () + PyBup(t),
yQM(t) :CPqJMZM(t),

A.3. Lyapunov inner product associated with bal- (104)
anced truncation where
In comparing the steps of the balanced truncation Yy =WyZ Y3(1:M,1:M). (105)

algorithm with the discussion in Section 5.1, the
reader may observe some similarities. In particu-
lar, both algorithms require the solution of a Lya-
punov equation for a Gramian used to transform
and reduce the system. Here, this connection is in-
vestigated further. In particular, it is shown that
the balanced truncation algorithm (Appendix A.2) (
may be viewed as a projection algorithm in a spe- A property of balanced truncation is that it pre-
cial Lyapunov inner product. serves stability when applied to stable systems [10]

Suppose the stable LTI system (4) has been reduceo(ﬁ‘ppendix A2) h -LhiST;']eSUH C?r.] be plroven using
using the balanced truncation model reduction al- the energy method. The proot is analogous to the

gorithm summarized in Appendix A.2. In order to proof of Theorem 5.1.1.
uncover the inner product associated with balanced

truncation, several transformations are required, 8Reachability (a.k.a. controllability) is a standard cqstce
in control theory. The author is referred to [15] for a detdil
The first step is to substitute (91) into (95). Then, discussion of reachability (controllability).
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Itis clear that (104) defines a projection of the orig-
inal LTI system (4) in a2 inner product weighted
by the reachability Gramian matriR. This ma-
trix defines a true inner product in the case when
P is symmetric positive-definite, which will hold if

A,B) is reachable (controllabl&)




A.4. Weak and penalty method implementations of Doing so yields:
ROM boundary conditions

. K3
Ja ‘PIVf\/ldQ = _%fBQ ‘pI (A'S+ Tf) nigdl’

S dg
Consider a linear PDE system of the form (35) in +Joa ‘pkKIJ 9] cnidr

an open bounded doma@ with boundarydQ. = Jo % dq’k ﬁ‘f,‘;M dQ
Assume, without loss of generality, that a transient, .
Dirichlet boundary condition is imposed @f: +§ Ja ‘pk 0_>q + aw_xj vmdQ,
(108)
V(x,t) =g(xt), onaQ, (106) for k=1,..M. Next, the modal decomposition

vy = SM Vi @; is substituted into (108). For a
linear system of PDEs like that considered here,

for some given, smooth function of boundary data (108) will give rise to a ROM dynamical system
g(x,t). Detailed below are two ways to enforce the of the form

boundary condition (106) in a ROM constructed
via continuous Galerkin projection. VM = AmVm + Fum. (109)

Itis often possible to prove stability of aROM con-  The implementation of the boundary condition
structed using continuous Galerkin projection with (108) is called a “weak implementation” because
boundary conditions implemented using the weak vy, will only satisfy the boundary condition (106)
or penalty methods. For an example of how to do in a weak sense. The weak implementation of
this in the context of the linearized compressible other boundary conditions (e.g., a Neumann and/or
Euler equations with non-reflecting far-field and Robin boundary condition) is similar to the pro-

acoustically-reflecting solid wall boundary condi- cedure described above for the Dirichlet boundary
tions, the reader is referred to [7]. condition.

A.4.2. Penalty method implementation of boundary

A.4.1. Weak implementation of boundary condi- conditions

tions The boundary condition (106) can also be imple-

mented using a penalty method. To do this, the

Projecting (35) onto th&™ reduced basis mode, following boundary term is added to the right hand

@, for vy, after applying the identities in (40), (43)

and (45), and integrating by parts gives: side of (107):
: o @l(u-gar. (10
. T., 1r T s oK= / 2Q
Jo®vmdQ = =3 Joo @ AT+ a—xf> nivydr

S vy for each modap, with k= 1,...,M. In (110), the

+ oo P& K3 23 midr parameter € R is a user-specified penalty param-

—Jo 0. Kﬁ‘?y dQ eter that controls the strength of the enforcement

LSRN of (106) ondQ. The idea is, ag — o, v}, — g on

+3 Jo 0 <W + %ok ) VmdQ, 9Q. Equation (107) together with equation (110)

(207) yields a system of the form (109). Since, with
for k=1,...,M. A weak implementation of the the penalty method implementation of the bound-
boundary condition (106) amounts to substituting ary condition, vy, will only equal g on dQ in a
g(x,t) into vy, in the boundary integrals in (107). weak sense, the penalty method implementation of
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a boundary condition is also a weak implementa- 0 0A 00
tion. The implementation of other boundary condi- 1 0 8 g 8 8 115
tions, e.g., a Neumann and/or Robin boundary con- 13~ DRe ’é 0000l (115)
dition, via the penalty method is analogous to the 00000
procedure for the Dirichlet boundary condition.
O u0O0O
. . . . 1 A 0 0O 0O
A5, _Llnearlzedcompressmle Navier-Stokes system si=—| 0 0 0 0 0], (116)
matrices PREl 6 0 0 0 O
. . . 0O 0 00O
If the fluid vector is given by q' =
(u, W, u3, T, p), where T and p H 0 0 0 0
denote the fluid temperature and density respec- 1 8 2“;)‘ 0 8 8
tively, the matrices that appear in (27) are given Kzzzﬁ—Re 0 0 ’é w oo | (117)
by the expressions found in [8], repeated below to 0 0 0 F’é 0
keep this article self-contained.
0 0 0 0O
B 1 [00Aro00
Up o 0o R X K2355_Re O p 0 0 0], (118)
0 G 0 0 O 0O 0 0 0O
A= 0 0w 0 0 |, 00000
Ty=1) 0 0 wm O 0 0 u 00O
p 0 0 0 u 00000
iz 0 0 0 0 1A 0000
o ® o0 R X Kai=ZRel 0 0 0 0 0o (19
A= 0 0O @ 0 o0 |, (111)
0 T(y-1) 0 & 0 00000
0 p 0 0 Lo 0 00
Uz O 0 0 0
0t 00 2 =L | 0 b asr 0 0|
As=| 0 0 G R B | BTPRel o o o« o
_ - Pr
0 0 T(y-1) s O 00 0 00
0 O 0 0 U o .
o ) . The parameters appearing in the viscous stress ma-
Zom @ fn pleoaerg trices K are: the Lamé viscosity coefficienfs
S S A A ZEEEEE; andy, the thermal diffusivityk, the Prandtl num-
gl % tgl oo ﬁ;&_gﬂfy,l)%m berPr, and the Reynolds numb&e
P P P 0 0.u
ox ay Jz
(112)
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